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On ‘maximal’ poles of zeta functions, roots of b-functions,
and monodromy Jordan blocks
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Abstract

The main objects of this study are the poles of several local zeta functions: the Igusa, topological,
and motivic zeta function associated to a polynomial or (germ of) holomorphic function in n
variables. We are interested in poles of maximal possible order n. In all known cases (curves,
non-degenerate polynomials) there is at most one pole of maximal order n, which is then given
by the log canonical threshold of the function at the corresponding singular point. For an isolated
singular point we prove that if the log canonical threshold yields a pole of order n of the
corresponding (local) zeta function, then it induces a root of the Bernstein–Sato polynomial
of the given function of multiplicity n (proving one of the cases of the strongest form of a
conjecture of Igusa–Denef–Loeser). For an arbitrary singular point, we show under the same
assumption that the monodromy eigenvalue induced by the pole has ‘a Jordan block of size n
on the (perverse) complex of nearby cycles’.

Introduction

0.1. Let f : X → C be a non-constant analytic function on an open part X of Cn . The
‘classical’ complex zeta function associated to f is an integral

Zϕ (f ; s) :=
∫
X

|f(x)|2sϕ(x)dx ∧ dx̄

for s ∈ C with �(s) > 0, where ϕ is a C∞ function with compact support on X. (Here and
further, x = (x1 , . . . , xn ) and dx = dx1 ∧ . . . ∧ dxn .) One verifies that Zϕ (f ; s) is holomorphic
in s. Either by resolution of singularities [3], or using the Bernstein–Sato polynomial bf (s) of
f [2], one can show that it admits a meromorphic continuation to C. The second method also
yields that each pole of Zϕ (f ; s) is a translate by a non-positive integer of a root of bf (s).
And moreover, for a root s0 of bf (s), the order of s0 − m as pole of Zϕ (f ; s) is at most the
multiplicity of s0 as root of bf (s) [13]. In particular a pole of (maximal) order n induces a root
of multiplicity n.

0.2. Let now f : X → Qp be a non-constant (Qp -)analytic function on a compact open X ⊂
Qn

p , where Qp denotes the field of p-adic numbers. Let | · |p and |dx| denote the p-adic norm
and the Haar measure on Qn

p , normalized in the standard way. The p-adic integral

Zp(f ; s) :=
∫
X

|f(x)|sp |dx|,

again defined for s ∈ C with �(s) > 0, is called the (p-adic) Igusa zeta function of f . Using
resolution of singularities, Igusa [11, 12] showed that it is a rational function of p−s ; hence
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it also admits a meromorphic continuation to C. (Everything can be generalized to finite
extensions of Qp .) There are various ‘algebro-geometric’ zeta functions, related to the p-adic
Igusa zeta functions: the motivic, Hodge, and topological zeta functions. We recall the definition
of the local and global version of the topological zeta function.

Let f : (Cn , 0) → (C, 0) be a germ of a non-zero holomorphic function f (resp. f ∈
C[x1 , . . . , xn ] non-zero, f(0) = 0). Let B be an open ball centred at the origin. Let π : X → B
(resp. π : X → Cn ) be an embedded resolution of (f−1{0}, 0) (resp. f−1{0}). We denote
by Ei, i ∈ J , the irreducible components of π−1(f−1{0})red . Let Ni (resp. νi − 1) be the
multiplicity of f ◦ π (resp. of π∗(dx1 ∧ . . . ∧ dxn )) at a generic point of Ei . For I ⊂ J , we
set EI := ∩i∈I Ei and E◦

I := EI \ (∪j �∈I Ej ).
The local topological zeta function Ztop,0(f, s) (resp. topological zeta function Ztop(f, s)) of

f at 0 (resp. of f) is the rational function defined by

Ztop,0(f, s) :=
∑
I⊂J

χ
(
E◦

I ∩ π−1{0}
) ∏

i∈I

1
νi + Nis

∈ Q(s), (∗)

Ztop(f, s) :=
∑
I⊂J

χ
(
E◦

I

)∏
i∈I

1
νi + Nis

∈ Q(s),

respectively. In [8], Denef and Loeser proved that these rational functions are well defined (they
do not depend on the resolution π), by expressing them as a kind of limit of p-adic Igusa zeta
functions. We just mention that the motivic zeta function specializes to the topological zeta
function and to the various p-adic Igusa zeta functions (for almost all p).

In this paper we study a piece of a remarkable conjecture of Igusa–Denef–Loeser, relating
the poles of these zeta functions to roots of the Bernstein–Sato polynomial, modelled on the
result for Zϕ (f ; s). We will treat poles of (maximal possible) order n. For the topological zeta
function, it is clear that these occur if and only if there exist n different components Ei with
the same quotient νi/Ni and having a non-empty intersection. For the other zeta functions
the situation is analogous. For that reason we formulate everything in terms of the ‘simplest’
zeta function, being the topological one. Our results are, however, also valid for the other zeta
functions mentioned.

Conjecture 1. The poles of Ztop,0(f, s) are roots of the local Bernstein–Sato polynomial
bf,0(s).

Conjecture 2. The function bf,0(s) · Ztop,0(f, s) is a polynomial.

Conjecture 2 is a stronger version of Conjecture 1, saying that the order of a pole s0 of
Ztop,0(f, s) is at most the multiplicity of s0 as root of bf,0(s). For curves (n = 2) Conjecture
1 was proved by Loeser [17]. In that paper he also verified Conjecture 2 for reduced f . For
arbitrary n these conjectures are still wide open.

0.3. There is a well-known relation between roots of Bernstein–Sato polynomials and
monodromy eigenvalues of f . In particular, if s0 is a root of bf,0(s), then exp(2πis0) is an
eigenvalue of the monodromy acting on some cohomology group of the (local) Milnor fibre of f
at some point of the germ of f−1{0} at 0 (equivalently; exp(2πis0) is a monodromy eigenvalue
on the nearby cycle complex ψf C). So the following conjecture, relating poles of Ztop,0(f, s) to
monodromy eigenvalues, is implied by Conjecture 1.

Conjecture 3. If s0 is a pole of Ztop,0(f, s), then exp(2πis0) is an eigenvalue of the local
monodromy acting on some cohomology group of the Milnor fibre of f at some point of the
germ of f−1{0} at 0.
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When (f−1{0}, 0) is a germ of an isolated singularity, then a result of Varchenko [25] relates
the multiplicity of a root of bf,0(s) to the size of the monodromy Jordan blocks for the associated
monodromy eigenvalue. A root of multiplicity n corresponds essentially to a Jordan block of
size n (see Theorem 3 for the precise formulation).

This is certainly not true in general for non-isolated singularities: for any homogeneous f
its monodromy is finite and hence all Jordan blocks have size 1. And, for instance, when f =∏n

i=1 xN
i , we have that bf,0(s) =

∏N
j=1(s − j/N)n . The ‘right’ generalization of Varchenko’s

result should be stated in terms of the sub-complex ψf,λC of the nearby cycle complex ψf C;
see Section 1.

0.4. In this paper we investigate for an arbitrary f in n variables, assuming that its topological
zeta function has a pole s0 of maximal order n, the implications concerning s0 being a root
of bf (s) of multiplicity n, and concerning a possible associated monodromy Jordan block of
size n. In a forthcoming paper we will study the case n = 2 more in detail, in particular for
non-reduced f.

0.5. With the notation of 2 the log canonical threshold c0(f) of f at 0 (resp. c(f) of f) is
defined as

c0(f) := min
i∈J :0∈π (Ei )

{νi/Ni}, c(f) := min
i∈J :f −1 {0}∩π (Ei ) �=∅

{νi/Ni};

see, for example, Proposition 8.5 in [15]. It does not depend on the resolution π since, for
example, −c(f) (resp. −c0(f)) is the root closest to the origin of the Bernstein–Sato polynomial
bf (s) (resp. bf,0(s)) of f (at 0); see, for example, Theorem 10.6 in [15]. (In fact by results of
Lichtin and Kashiwara every root of bf (s) is of the form −(νi + k)/Ni , for some i ∈ J and
some integer k � 0; see Theorem 10.7 in [15].)

Clearly, −c0(f) is the candidate pole of Ztop,0(f, s) closest to the origin. The third author
has formulated the following.

Conjecture 4. (1) Ztop,0(f, s) has at most one pole of order n.
(2) If Ztop,0(f, s) has in s0 a pole of order n, then s0 is the pole closest to the origin of

Ztop,0(f, s).

This conjecture is proved in case n = 2 by Veys [26] and with Laeremans [16] when f
is non-degenerate with respect to its Newton polyhedron and in these cases s0 = −c0(f)
in (2).

Our main result is roughly as follows. Let f : (Cn , 0) → (C, 0) be a germ of a holomorphic
function with f(0) = 0 such that s0 = −c0(f) is a pole of order n of Ztop,0(f, s). Denote λ :=
exp(2πis0). Then the λ-characteristic subspace of the (n − 1)th cohomology of the Milnor
fibre of f at 0 has a non-zero (2n − 2)-graded part of its weight filtration. Morally, ‘λ has a
Jordan block of size n on the perverse sheaf ψf C’. See Theorem 2 and Corollary 1 for a precise
formulation. The result of Varchenko then implies the following.

Theorem 1. Let f : (Cn , 0) → (C, 0) be a germ of a non-zero holomorphic function
such that (f−1{0}, 0) is a germ of an isolated hyper-surface singularity. If s0 = −c0(f) is
a pole of order n of Ztop,0(f, s), then (s + c0(f))n divides the Bernstein–Sato polynomial
bf,0(s).

In such a case there exists an integer N � 1 such that c0(f) = 1/N and either

(1) N = 1 and (s + 1)n divides bf,0(s), or
(2) N > 1 and (s + 1/N)n (s + 2/N)n . . . (s + (N − 1)/N)n (s + 1)n divides bf,0(s).
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If Conjecture 4 is true, then Theorems 2 and 1 treat in fact ‘all’ poles of maximal order n.
Our proof uses a result of Saito (Proposition 1) and the ideas in the proof of the main result
of van Doorn and Steenbrink [10]. In Theorem 4 we provide a global version for polynomials
f and Ztop(f, s).

1. Preliminaries

1.1. Monodromy

Let f be a holomorphic function on an n-dimensional complex manifold X. Denote by Xt the
hyper-surface f−1{t} for t ∈ C. Let x ∈ X0 and choose ε, η > 0 with η � ε � 1. The restriction
of f to {z ∈ X

∣∣ |z − x|� ε, 0 < |f(z)| < η} is a C∞ fibre bundle, the Milnor fibration, whose
typical fibre

Ff,x := {z ∈ X
∣∣ |z − x|� ε, f(z) = δ} for 0 < δ < η

is called the Milnor fibre of f at x ∈ X0 . The Milnor fibre is endowed with the monodromy
automorphism Mf,x , which induces an automorphism, denoted by Mq

f,x , on the cohomology
groups Hq (Ff,x , C).

Following Deligne [6] one has a sheaf theoretic version of the previous constructions. Let D
be a small disk around the origin in C, D∗ := D \ {0} and D̃∗ the universal covering of D∗.
Consider the pre-image X∗ of D∗ in X and denote by X̃∗ the fibre product X∗ ×D∗ D̃∗. Let
i : X0 → X be the inclusion morphism and j : X̃∗ → X.

For the constructible sheaf CX on X and for any q � 0, the nearby cycle sheaf Rqψf CX :=
i∗Rqj∗j

∗CX is a constructible sheaf on X0 . The deck transformation (x, u) �→ (x, u + 1)
on X̃∗ induces the action of a canonical monodromy automorphism T q on Rqψf CX such
that the vector space (Rqψf CX , T q )x with automorphism is canonically isomorphic to
(Hq (Ff,x , C),Mq

f,x).
In fact, working on the derived category of complexes with automorphisms and bounded

constructible cohomology, the nearby cycle complex ψf CX on X0 is defined by ψf CX :=
i∗Rj∗j

∗CX ; see [6]. Recall that the sheaf ψf CX [n − 1] is a perverse sheaf. The monodromy T
on the shifted perverse sheaf ψf CX admits a decomposition T = TsTu , where Ts is semi-simple
and Tu is unipotent. For λ ∈ C, let

ψf,λCX = Ker (Ts − λ) ⊂ ψf CX .

There are also decompositions

ψf CX =
⊕

λψf,λCX , Hq (Ff,x , C) =
⊕

λHq (Ff,x , C)λ ,

such that the action of Ts on ψf,λCX and on Hq (Ff,x , C)λ is the multiplication by λ ∈ C∗. The
groups Hq (Ff,x , C)λ ⊕ Hq (Ff,x , C)λ̄ = Hq (ψf,λCX )x ⊕Hq (ψf,λ̄CX )x have a canonical mixed
Hodge structure; see, for example, [19, 20, 24]. Let W be the weight filtration of this canonical
mixed Hodge structure. The following proposition is proved by Saito (for a proof see (1.1.3)
and Proposition 1.7 in [21]).

Proposition 1 [21]. Let N be the logarithm of the unipotent part Tu of the monodromy
T . If GrW

2n−2H
n−1(Ff,x , C)λ �= 0, then Nn−1 �= 0 on ψf,λCX in the category of shifted perverse

sheaves.

Since X is smooth and n-dimensional, Nn = 0 on the nearby cycle sheaf ψf CX [n − 1]. This
implies that the Jordan blocks of the monodromy Mq

f,x on the cohomology groups Hq (Ff,x , C)
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have size � q + 1 (see, for example, [9] and references there). In fact, it is also proved there that
the support of the perverse sheaf Nn−1ψf CX [n − 1] is empty or 0-dimensional (see Proposition
0.5 in [9]).

1.2. Bernstein–Sato polynomials

Let X be a complex n-dimensional manifold, resp. smooth algebraic variety, and let X0 be
the hyper-surface defined as the zero locus of a holomorphic function, resp. regular function,
f . Let DX be the ring of analytic, resp. algebraic, partial differential operators associated
to X.

The Bernstein–Sato polynomial (or b-function) bf (s) of f is the unique monic polynomial of
lowest degree satisfying

bf (s)fs = Pfs+1 with P ∈ DX [s].

It exists at least locally, and globally if X is an affine algebraic variety [2, 4, 22]. Moreover, the
b-function of a regular function f and of its associated analytic function coincide. Restricting
to the stalk at a point x ∈ X0 , one can also define the local b-function bf,x(s). If X is Stein,
resp. affine, then bf (s) is the least common multiple of these local b-functions.

Let Rf be the set of the roots of bf (−s), and mα the multiplicity of α ∈ Rf . Then Rf ⊂ Q>0 ,
and mα � n because bf (s) is closely related to the monodromy on the nearby cycle sheaf ψf CX ;
see, for example, [14]. Set αf = min Rf ; this number coincides with the log canonical threshold;
see [15, 19].

2. Monodromy on ψf CX and poles of zeta functions

2.1. We are interested in poles of maximal order n of Ztop,0(f, s). Laeremans and the third
author [16] proved that every pole of maximal order of Ztop,0(f, s) (or of Ztop(f, s)) must be
of the form −1/N , for a positive integer N � 1.

Theorem 2. Let f : (Cn , 0) → (C, 0) be a germ of a non-zero holomorphic function. If
s0 = −c0(f) is a pole of order n of Ztop,0(f, s), then

GrW
2n−2H

n−1(Ff,0 , C)λ �= 0 for λ := exp(2πis0).

In such a case, there exists an integer N � 1, such that c0(f) = 1/N and either

(1) N = 1 and GrW
2n−2H

n−1(Ff,0 , C)1 �= 0 or
(2) N > 1 and GrW

2n−2H
n−1(Ff,0 , C)exp(2πi(−j/N )) �= 0 for all j with 1 � j � N .

Proof. Assume s0 is a pole of (maximal) order n of Ztop,0(f, s), then write s0 =
−c0(f) = −1/N for some integer N � 1 and set λ := exp(2πi(−1/N)). To show that
GrW

2n−2H
n−1(Ff,0 , C)λ �= 0, we will adapt the proof of the main result of van Doorn and

Steenbrink in [10]; see also Varchenko [25].
Let B be an open ball centred at the origin. Let π : X → B be an embedded resolution

of the germ (f−1{0}, 0), which is an isomorphism outside of the pre-image of f−1{0}. Set
E := π−1(f−1{0}) and Ex := π−1(0) and denote by Ei, i ∈ J , the irreducible components of
E. For I ⊂ J , put also EI :=

⋂
j∈I Ej .
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By the definition of the local topological zeta function, see (∗), since s0 is a pole of order
n of Ztop,0(f, s), there exist n irreducible components E0 , . . . , En−1 of E and there is a point
x̃0 ∈ ∩n−1

i=0 Ei such that π(x̃0) = 0 and νi/Ni = 1/N for all 0 � i � n − 1.
We may assume that one of these irreducible components, called, for example, E0 , is a Kähler

compact non-singular variety. Otherwise we blow up X at x̃0 and get a new configuration of
exceptional divisors where the new exceptional divisor is a Kähler compact non-singular variety
E0 with ν0/N0 = 1/N , and we can choose a ‘new’ x̃0 on this E0 satisfying the requirements
above.

To describe the quotient GrW
2n−2H

n−1(Ff,0 , C)λ , one uses the fact that it is pure of type
(n − 1, n − 1) and, therefore, a quotient of the piece Fn−1 of the Hodge filtration. These terms
can be computed using the relative logarithmic de Rham complex.

Let e be a common multiple of all multiplicities Ni, i ∈ J , and let C̃ be another copy of C. Let
Ỹ be the normalization of the space Y obtained from X by the base change σ : C̃ → C : σ(t̃) =
t̃e . Let ρ : Ỹ → X and f̃ : Ỹ → C̃ be the natural projection maps. Let Di := ρ−1(Ei), i ∈ J,
and set D := ρ−1(E); this is nothing but D = ∪i∈J Di . Let Dx := ρ−1(Ex). For every I ⊂ J ,
let DI := ρ−1(EI ). The map DI → EI is a cyclic cover of degree gcd(Ni, i ∈ I).

Ỹ

f̃

��

ρ

����
Y = C̃ ×C X

��

�� X

f ◦π

��
C̃

σ �� C

By the semi-stable reduction theorem, π and e can be chosen in such a way that Ỹ is smooth.
The divisor D = f̃−1(0) is a reduced normal crossing divisor; see [24]. From [23], see also [24],
there is an isomorphism

Hq (Ff,0 , C) � Hq
(
Dx,Ω•

Ỹ /C̃
(log D) ⊗ODx

)
,

so in particular Grp
F Hq (Ff,0 , C) � Hq−p(Dx,Ωp

Ỹ /C̃
(log D) ⊗ODx

). Then

Fn−1Hn−1(Ff,0 , C) � Grn−1
F Hn−1(Ff,0 , C) � H0(Dx,Ωn−1

Ỹ /C̃
(log D) ⊗ODx

)
� H0(Dx,Ωn

Ỹ
(log D) ⊗ODx

)
.

The following results can be deduced from Section 4 in [25]. For every ω ∈ H0(B,Ωn ), define
the geometrical weight g(ω) with respect to the resolution π as

g(ω) := min
i∈J

{
ordEi

(ω) + 1
Ni

}
.

For every ω ∈ H0(B,Ωn ) with geometrical weight g(ω) � 1, define R(ω) := f̃−e/N (πρ)∗(ω).
Then R(ω) ∈ H0(Ỹ ,Ωn

Ỹ
(log D)). Let σ(ω) be its Poincaré residue along Dx , that is, σ(ω) is

the restriction to Dx of f̃ (−e/N )+1(πρ)∗(ω)/df̃ . Then σ(ω) is an element in Fn−1Hn−1(Ff,0 , C)
and the semi-simple part of the monodromy acts on σ(ω) as

Ts(σ(ω)) = exp(−2πig(ω))σ(ω).

The form R(ω) has a first-order pole along Di if and only if g(ω) = (ordEi
(ω) + 1)/Ni , and

else R(ω) is regular along Di .
Consider the differential form η = dx1 ∧ . . . ∧ dxn . Since s0 = −c0(f) = −1/N does not

depend on the resolution, g(η) = 1/N � 1 does not depend on π. In fact 1/N is the minimum;
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so R(η) has a first-order pole along Di if and only if 1/N = νi/Ni , and else R(η) is regular
along Di .

Let D00 be one of the irreducible components of D0 . On the open subspace D◦
00 = D00 \

(∪j �=0Dj ), the restriction of the map ρ from D◦
00 to E◦

0 is an étale cover. The form σ(η) is
not equal to zero on D◦

00 and is in fact a meromorphic (n − 1)-form with logarithmic poles on
D00 \ D◦

00 . Thus R(η) defines a non-zero element in H0(Ỹ ,Ωn
Ỹ

(log D)). Notice that, according
to Deligne’s theorem [5, 23, 25], the class of σ(η) in Hn−1(D◦

00 , C) is a non-zero element since
D00 is a projective manifold and D00 \ D◦

00 ⊂ D00 is a divisor with normal crossings.
On an adequate chart on Ỹ , with local coordinates y1 , . . . , yn , the function f̃ is given by

f̃(y1 , . . . , yn ) = y1y2 . . . yk .

Moreover, if y1 = 0 is the equation of the divisor D00 (and hence of D0) and yj = 0 gives the
divisor D00 ∩ Dj , then

σ(η) = q(y2 , . . . , yn ) · ya2
2 . . . yak

k

dy2

y2
∧ . . . ∧ dyk

yk
∧ dyk+1 ∧ . . . ∧ dyn ,

where q(y2 , . . . , yn ) is holomorphic, q(0) �= 0 and aj = e(νj (i)/Nj (i) − 1/N).
In particular, at a pre-image P0 of x̃0 in Ỹ , R(η) can be written locally as u(dy1/y1) ∧ . . . ∧

(dyn/yn ), with u(0) �= 0, because of the minimum. Considering, for each n-fold point P on Dx ,
the multiple residue map ResP : H0(Ỹ ,Ωn

Ỹ
(log D)) → C, we have in particular that ResP0 is

surjective.
Let Vλ be the set of the n-fold points of D that are pre-images of those n-fold points in ∪I EI

for which |I| = n, λNi = 1 for all i ∈ I, and at least one Ei, i ∈ I, is an irreducible component
of Ex . Then

GrW
2n−2H

n−1(Ff,0 , C)λ
∼= Image

(⊕
P ∈Vλ

ResP : H0(Ỹ ,Ωn
Ỹ

(log D)
)
→ CVλ

)
;

see [23] and [10].
Since P0 ∈ Vλ and ResP0 is surjective then GrW

2n−2H
n−1(Ff,0 , C)λ �= 0, which concludes the

proof.
To show that GrW

2n−2H
n−1(Ff,0 , C)exp(2πi(−j/N )) �= 0 also for 2 � j � N , we argue as follows;

see [10]. Since the weight filtration is defined over Q, it has a complex conjugation compatible
with that of CVλ . Let AP0 = {g(ω) : ω ∈ H0(B,Ωn ), g(ω) � 1 and ResP0 (R(ω)) �= 0 }. Then
g(η) = 1/N ∈ AP0 . If 1/N < 1, then the complex conjugate of ResP0 (R(η)) in CVλ is an
eigenvector of the semi-simple part of the monodromy Ts for the eigenvalue λ̄ = exp(2πi(1/N)).
In particular there exists η̃ ∈ H0(B,Ωn ) such that g(η̃) = (N − 1)/N ∈ AP0 . After the remark
on page 230 in [10], one can prove that {1/N, 2/N, . . . , (N − 1)/N, 1} ⊂ AP0 .

2.2. Using Proposition 1 one ‘morally’ obtains a Jordan block of size n in the category of
shifted perverse sheaves.

Corollary 1. Let f : (Cn , 0) → (C, 0) be a germ of a non-zero holomorphic function. If
s0 = −c0(f) is a pole of order n of Ztop,0(f, s) and λ := exp(2πis0), then Nn−1 �= 0 on ψf,λCX

in the category of shifted perverse sheaves.
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3. Applications for isolated hyper-surface singularities

3.1. Letf : (Cn , 0) → (C, 0) be a germ of a holomorphic function such that (f−1{0}, 0) is a
germ of an isolated hyper-surface singularity. The following result, by Varchenko [25] Theorem
1.4, relates roots of the Bernstein–Sato polynomial bf,0(s) and Jordan blocks of the algebraic
monodromy. Let b̃f ,0(s) be the microlocal (or reduced) Bernstein–Sato polynomial defined by
bf,0(s) = (s + 1)b̃f ,0(s).

Theorem 3 [25]. Let Mn−1
f ,0 be the algebraic monodromy action on the (n − 1)th co-

homology Hn−1(Ff,0 , C) of the Milnor fibre of f at the origin.
(i) b̃f ,0(s) is divisible by (s − β)n if and only if β ∈ (−1, 0) and Mn−1

f ,0 has a Jordan block
of size n for the eigenvalue exp(2πi(β)).

(ii) b̃f ,0(s) is divisible by (s + 1 + α)n−1 , with α ∈ Z+ , if and only if α = 0 and Mn−1
f ,0 has a

Jordan block of size n − 1 for the eigenvalue 1.

Proof of Theorem 1 (see Introduction). The proof follows from Theorems 2 and 3, together
with the fact that for the eigenvalue λ = 1 (resp. λ �= 1), GrW

2n−2H
n−1(Ff,0 , C)λ �= 0 if and only

if Mn−1
f ,0 has a Jordan block of size n − 1 (resp. of size n); see [10] and [23].

Theorem 4. Let f ∈ C[z1 , . . . , zn ] be a polynomial such that f−1{0} has only isolated
singularities. If s0 = −c(f) is a pole of order n of Ztop(f, s), then (s + c(f))n divides the
Bernstein–Sato polynomial bf (s).

In such a case there exists an integer N � 1 such that c(f) = 1/N and either

(1) N = 1 and (s + 1)n divides bf (s), or
(2) N > 1 and (s + 1/N)n (s + 2/N)n . . . (s + (N − 1)/N)n (s + 1)n divides bf (s).

Proof. The proof follows from the following two facts. First, a pole of order n of the local
topological zeta function is also a pole of the global Ztop(f, s), and conversely, a pole of order
n of Ztop(f, s) is a pole of some Ztop,x(f, s) at some point x ∈ f−1{0}. Second, bf (s) is the
least common multiple of all local Bernstein–Sato polynomials bf,x(s).

3.2. Non-degenerate Newton polyhedron

For the notion of a function that is non-degenerate with respect to its Newton polyhedron, we
refer, for instance, to [16] or [1]. Remark that almost all polynomials are non-degenerate with
respect to their (either local or global) Newton polyhedron (see [1, p. 151]).

For such functions, Denef proved that a set of candidate poles of the corresponding zeta
functions is obtained from the (n − 1)-dimensional faces of the corresponding polyhedron; for
example, see [7]. Loeser [18] proved that under some additional conditions these candidate
poles are roots of the Bernstein–Sato polynomial bf (s).

Corollary 2. Let f : (Cn , 0) → (C, 0) be a germ of a holomorphic function that defines a
germ of an isolated hyper-surface singularity that is non-degenerate with respect to its Newton
polyhedron at the origin. If s0 is a pole of order n of Ztop,0(f, s) then (s + s0)n divides bf,0(s).
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Proof. Under the hypothesis, Laeremans and the third author proved in Theorem 2.4 in
[16] that Ztop,0(f, s) has at most one pole of order n. Moreover, if such a pole exists, then it
is the pole closest to the origin that coincides with −c0(f). Thus, after Theorem 1 we get the
result.
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